
Citation: Kim, I.; Kim, H.-g.; Kim,

I.-y.; Ohn, S.-y.; Chi, S.-d.

Event-Based Emergency Detection

for Safe Drone. Appl. Sci. 2022, 12,

8501. https://doi.org/10.3390/

app12178501

Academic Editor: Luigi Fortuna

Received: 17 May 2022

Accepted: 21 August 2022

Published: 25 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Event-Based Emergency Detection for Safe Drone
Isaac Kim 1 , Hyun-geun Kim 1 , In-young Kim 1 , Sung-yup Ohn 2 and Sung-do Chi 2,*

1 Department of Computer Engineering, Korea Aerospace University, Goyang-si 10540, Gyeonggi-do, Korea
2 Department of Software and Computer Engineering, Korea Aerospace University,

Goyang-si 10540, Gyeonggi-do, Korea
* Correspondence: sdchi@kau.ac.kr

Abstract: Quadrotor drones have rapidly gained interest recently. Numerous studies are underway
for the commercial use of autonomous drones, and distribution businesses especially are taking
serious reviews on drone-delivery services. However, there are still many concerns about urban
drone operations. The risk of failures and accidents makes it difficult to provide drone-based services
in the real world with ease. There have been many studies that introduced supplementary methods
to handle drone failures and emergencies. However, we discovered the limitation of the existing
methods. Most approaches were improving PID-based control algorithms, which is the dominant
drone-control method. This type of low-level approach lacks situation awareness and the ability to
handle unexpected situations. This study introduces an event-based control methodology that takes
a high-level diagnosing approach that can implement situation awareness via a time-window. While
low-level controllers are left to operate drones most of the time in normal situations, our controller
operates at a higher level and detects unexpected behaviors and abnormal situations of the drone.
We tested our method with real-time 3D computer simulation environments and in several cases,
our method was able to detect emergencies that typical PID controllers were not able to handle. We
were able to verify that our approach can provide enhanced double safety and better ensure safe
drone operations. We hope our discovery can possibly contribute to the advance of real-world drone
services in the near future.

Keywords: safe drone; emergency detection; time-window; event-based control; UAV (unmanned
aerial vehicle)/quadrotor drone

1. Introduction

Drone applications are widely studied in various industrial fields due to the potential
it brings by overcoming the limitation of road transportation. Their ability to view large
areas at a low cost from altitude provides new viewing aspects and new data acquisition
ability (or existing data can be sourced at a large scale at a lower cost) to make decisions and
manage operations more effectively [1]. Moreover, we are currently witnessing the potential
of supply-delivery (e.g., Emergency medical support and courier delivery) applications in
urban areas [2]. However, civil confidence in urban drone operations is still questionable,
as injuries and property damage resulting from drone flights over populated areas are
not unusual [3,4]. Numerous statistics report a vast increase in drone-involved incidents,
especially in urban areas. According to recent research in the UK, the number of reported
drone-caused incidents increased by 1000% from 2014 to 2017 [5]. Therefore, commercial
and policymaking efforts are turning to contemplating this future and how airborne drones
may need control in such uses [1]. The current drone-control technology seems not sufficient
to satisfy universal concerns on drone safety. In order to meet the rising demands of
commercial drone industries, a reliable double-safe drone-control method is necessary. We
consider our proposed method to be a solution to this matter.

Appl. Sci. 2022, 12, 8501. https://doi.org/10.3390/app12178501 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12178501
https://doi.org/10.3390/app12178501
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6195-0489
https://orcid.org/0000-0002-9688-3199
https://orcid.org/0000-0003-3495-1392
https://orcid.org/0000-0003-4498-8818
https://doi.org/10.3390/app12178501
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12178501?type=check_update&version=1

Appl. Sci. 2022, 12, 8501 2 of 16

2. Background

Many studies argue that the dominating drone-control method, PID (Proportional
Integral Derivative) control, offers the simplest and yet most efficient solution to many
real-world control problems [6–8]. However, some reviews point out the limitations of
the current dominating technology. Smyczynski [9] mentioned that using PID regulators
for the following platform (AR Drone) was successful only with a movement speed of
less than 5 km/h. However, to achieve satisfactory results with higher speed, other types
of regulators should be tested [9]. We considered this issue was due to the feedback
architecture and the low-level approach it takes. Instability is the disadvantage of feedback.
When using feedback there is always a risk that the closed-loop system will become
unstable [10]. And moreover, control methods that rely on GPS (global positioning system)
data [11–13] cannot avoid the sensor data error problem [3].

Recent research has claimed new methods to handle the instability of drone control
with various approaches [14]. Some of them improved the existing algorithm, whereas
others took a higher-level approach by implementing mission-control layers on top of PID
controllers. Numerous studies introduced fault-tolerant control mechanisms (e.g., [15–21]).
Heredia [17] and Qin [19] introduced sensor-failure detection methods. These approaches
focus on providing a fault-tolerant sensor data filter and reducing sensor errors during
computation. However, it was not possible to overcome all types and degrees of sensor
failures in these studies. Furthermore, they only apply to internal fails. Our approach, on
the other hand, is capable of detecting both external and internal fails and emergencies, and
is independent of the type and degree of failure. Previous approaches did not take situation
awareness into account and lacked the ability to perceive and respond to situations outside
of normal conditions.

Our novel method takes a strategic-level approach to meet the requirements of modern
drone applications. Unlike PID-based control methods, our methodology does not involve
the low-level control loop. However, it takes place in the detection and diagnosis of
abnormal situations and operates as a second-hand safety insurance. This is achieved by
implementing temporal scoping, checking the interval of time spent maneuvering from
one location to another. By operating in conjunction with PID-based control algorithms,
we should be able to provide a much wider range of flight-safety insurance coverage and
maintain the preservation of cutting-edge robust control technology at the same time.

3. Proposed Methodology

Our proposal is an event-based emergency detection method using the temporal (time)
scope as a diagnosis method. The main idea of the time-window is to expect the drone to
arrive at certain waypoints in a definite time-window [22]. The goal of this is to make sure
there is no internal or external failure that affected the mission in any means by assuming
that if the drone does not make it in time there is an issue.

Many unexpected emergency conditions could possibly occur during autonomous
drone missions, which are not easy to detect without strategic control methods. We
designed our control method to operate in conjunction with existing control methods and
handle abnormal situations, whereas the basic functionalities of a drone such as sensing
and controlling are done with PID-based low-level control algorithms.

We defined a safe drone framework to handle unexpected situations with our event-
based intelligent controller operating in conjunction on a high-level with a mission con-
troller in the middle and a PID controller at a low-level as shown in Figure 1 [23]. The
event-based intelligent controller uses the time-window for abnormality detection while
the two other controllers work on the drone maneuver controls. The mission controller is
a mid-level controller for path planning and navigating designed based on other studies
(e.g., [24–28]).

Appl. Sci. 2022, 12, 8501 3 of 16

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 17

individual time values (Tmax-intitial, Tmin-intitial) for each waypoint interval should be calculated
before flight operations.

Figure 1. Proposed safe drone framework. The event-based intelligent controller is designed to de-
tect emergency situations with time-window check results and perform an emergency landing if
needed. We mounted our event-based controller on top of lower-level controllers and designed it
to work in conjunction. Our proposing method requires waypoint-based predefined flight plans in
order to calculate the expected time-window and diagnose abnormality.

During the flight, our controller will retrieve the current time and the state of the
drone. The state of the drone includes information on which waypoint interval the drone
is passing currently. By calculating the Tstart (the actual time the drone left the last way-
point) and the values of Tmax and Tmin, the drone can determine the finalized time-window
Twindow. The calculation of the variables and the time-window is detailed below with defi-
nitions and Equations (1)–(4).

Let Texp-int be the expected interval time from one waypoint to another.
Let α be the rate of maximum late arrival acceptance, and let β be the rate of maxi-

mum early arrival acceptance.
Then we defined the maximum and minimum acceptable interval time as below.

Tmax-intitial = α × Texp (1)

Tmin-initialt = β × Texp (2)

Let Tstart be the actual time the drone left the previous waypoint.
Then we defined the maximum and minimum acceptable time as below.

Tmax = Tstart + Tmax-intitial (3)

Tmin = Tstart + Tmin-intitial (4)

where Tmin < Twindow < Tmax
Let Twindow be the acceptable time-window range for the interval maneuver.
Texp-int from the above equations is a statistic average value of a time interval from one

waypoint to another. It is calculated by a function that takes the distance between two
specific waypoints. In our case, we applied environmental wind in two opposing direc-
tions with the amount of maximum wind speed our drone can handle.

3.1. System Architecture
Firstly, in terms of implementing our time-window (temporal scope) to a drone, we

designed an event-based controller that cooperates with other controllers, as shown in
Figure 2. We assumed that the overall drone system includes a group of input sensors, a
group of actuators, a sensor-based low-level control loop, and a mission-level controller.

Figure 1. Proposed safe drone framework. The event-based intelligent controller is designed to detect
emergency situations with time-window check results and perform an emergency landing if needed.
We mounted our event-based controller on top of lower-level controllers and designed it to work
in conjunction. Our proposing method requires waypoint-based predefined flight plans in order to
calculate the expected time-window and diagnose abnormality.

A time-window is a temporal scope with a minimum-acceptance time and maximum-
acceptance time. The significance of this approach is that it is capable of handling emergency
situations even without diagnosing the specific cause and situations. The individual time
values (Tmax-intitial, Tmin-intitial) for each waypoint interval should be calculated before flight
operations.

During the flight, our controller will retrieve the current time and the state of the drone.
The state of the drone includes information on which waypoint interval the drone is passing
currently. By calculating the Tstart (the actual time the drone left the last waypoint) and the
values of Tmax and Tmin, the drone can determine the finalized time-window Twindow. The
calculation of the variables and the time-window is detailed below with definitions and
Equations (1)–(4).

Let Texp-int be the expected interval time from one waypoint to another.
Let α be the rate of maximum late arrival acceptance, and let β be the rate of maximum

early arrival acceptance.
Then we defined the maximum and minimum acceptable interval time as below.

Tmax-intitial = α × Texp (1)

Tmin-initialt = β × Texp (2)

Let Tstart be the actual time the drone left the previous waypoint.
Then we defined the maximum and minimum acceptable time as below.

Tmax = Tstart + Tmax-intitial (3)

Tmin = Tstart + Tmin-intitial (4)

where Tmin < Twindow < Tmax
Let Twindow be the acceptable time-window range for the interval maneuver.
Texp-int from the above equations is a statistic average value of a time interval from

one waypoint to another. It is calculated by a function that takes the distance between two
specific waypoints. In our case, we applied environmental wind in two opposing directions
with the amount of maximum wind speed our drone can handle.

Appl. Sci. 2022, 12, 8501 4 of 16

3.1. System Architecture

Firstly, in terms of implementing our time-window (temporal scope) to a drone, we
designed an event-based controller that cooperates with other controllers, as shown in
Figure 2. We assumed that the overall drone system includes a group of input sensors, a
group of actuators, a sensor-based low-level control loop, and a mission-level controller. By
adding our event-based controller (decision-maker) to the drone system mentioned above,
we were able to define a safe drone.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 17

By adding our event-based controller (decision-maker) to the drone system mentioned
above, we were able to define a safe drone.

Figure 2. Proposed safe drone architecture. We mounted our event-based controller on top of low-
level controllers and expanded the decision-making system. Inside the event-based controller, the
knowledge base stores the time-window data (e.g., Tmin, Tmax) for each waypoint that is used in path-
traveling drone operations.

The expected time-window data for each waypoint interval should be pre-defined before
flight operations and stored in the knowledge base, inside the event-based controller. We at-
tempted to illustrate a safe drone system with our event-based controller mounted on top of
a typical drone system and combining both into a decision-making controller.

The event-based controller will receive processed sensor data such as time and loca-
tion, refined by the existing controller. It will then process the emergency-detection algo-
rithm using both the delivered sensor data and its pre-defined time-window data, stored
inside its knowledge base. If needed, the event-based controller can command the PID-
based controller to proceed with an emergency landing.

3.2. Event-Based Control Mechanism
To explain the time-window mechanism in a logical order, even before the event-

based emergency-detection system operates, the integrated low-level sensor-based con-
troller will accept sensor data inputs and perform an internal control loop. After the low-
level controller involvement, the event-based controller would diagnose emergencies
based on time-window mechanisms, as shown in Figure 3.

Figure 2. Proposed safe drone architecture. We mounted our event-based controller on top of low-
level controllers and expanded the decision-making system. Inside the event-based controller, the
knowledge base stores the time-window data (e.g., Tmin, Tmax) for each waypoint that is used in
path-traveling drone operations.

The expected time-window data for each waypoint interval should be pre-defined
before flight operations and stored in the knowledge base, inside the event-based controller.
We attempted to illustrate a safe drone system with our event-based controller mounted on
top of a typical drone system and combining both into a decision-making controller.

The event-based controller will receive processed sensor data such as time and location,
refined by the existing controller. It will then process the emergency-detection algorithm
using both the delivered sensor data and its pre-defined time-window data, stored inside
its knowledge base. If needed, the event-based controller can command the PID-based
controller to proceed with an emergency landing.

3.2. Event-Based Control Mechanism

To explain the time-window mechanism in a logical order, even before the event-based
emergency-detection system operates, the integrated low-level sensor-based controller
will accept sensor data inputs and perform an internal control loop. After the low-level
controller involvement, the event-based controller would diagnose emergencies based on
time-window mechanisms, as shown in Figure 3.

If the drone has reached the waypoint, the event-based controller will check whether
the arrival time is in-bound of the pre-designated time-window. However, during the
interval, the controller would simultaneously check whether the Tmax (maximum acceptable
time) was exceeded. If the time is exceeded without arriving at the waypoint, it will
diagnose an emergency and command the drone to perform an emergency landing. If

Appl. Sci. 2022, 12, 8501 5 of 16

the arrival time is earlier than the Tmin (minimum acceptable time), the controller will
command the drone to perform an emergency landing as well. In other cases where the
drone has arrived within the time-window, the controller will either allow the drone to
proceed to the next waypoint or perform the final landing procedure, as shown in Figure 4.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 17

Figure 3. Visual illustration of the time-window. ① (Tstart) is counted when the drone leaves a way-
point and starts to head to another. If the drone arrives the waypoint at ②, it is considered a too-
early arrival, which is an abnormal situation. ③ is the minimum time boundary of a normal arrival.
If the drone arrives at ④, which is inside the normal boundary, it is considered a normal arrival
and the drone would proceed to the next goal. As the drone passes ⑤, which is the maximum time
boundary, the time exceeds Tmax (max time), making the controller believe it is detecting an emer-
gency and proceed with an emergency landing.

If the drone has reached the waypoint, the event-based controller will check whether
the arrival time is in-bound of the pre-designated time-window. However, during the in-
terval, the controller would simultaneously check whether the Tmax (maximum acceptable
time) was exceeded. If the time is exceeded without arriving at the waypoint, it will diag-
nose an emergency and command the drone to perform an emergency landing. If the ar-
rival time is earlier than the Tmin (minimum acceptable time), the controller will command
the drone to perform an emergency landing as well. In other cases where the drone has
arrived within the time-window, the controller will either allow the drone to proceed to
the next waypoint or perform the final landing procedure, as shown in Figure 4.

Figure 3. Visual illustration of the time-window. 1© (Tstart) is counted when the drone leaves a
waypoint and starts to head to another. If the drone arrives the waypoint at 2©, it is considered a
too-early arrival, which is an abnormal situation. 3© is the minimum time boundary of a normal
arrival. If the drone arrives at 4©, which is inside the normal boundary, it is considered a normal
arrival and the drone would proceed to the next goal. As the drone passes 5©, which is the maximum
time boundary, the time exceeds Tmax (max time), making the controller believe it is detecting an
emergency and proceed with an emergency landing.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 17

Figure 4. Control flowchart illustrating the control loop implemented in the event-based controller.
The event-based controller will not accept both early and late arrivals at each designated waypoint.
If the drone does not arrive inside the time-window, the event-based controller will consider the
situation an emergency.

As a result, our event-based controller would be able to detect both early arrivals and
late arrivals. By restricting the drone’s maneuvering time interval, we expect to provide a
strict standard for drone controls and further ensure fail-safe missions.

The theoretically ideal implementation of our event-based controller is to only oper-
ate in a discrete manner based on events such as waypoint arrivals and exceeding time-
windows. However, for the practicality of the algorithm, we recommend applying way-
points at narrow intervals to increase the diagnosing cycles and improve the calculation
and control accuracy.

4. Case Study
We attempted to test and verify our proposed method in simulation environments to

see how well it detects emergency situations. We created a custom 3D simulation envi-
ronment dedicated to testing our proposed system using AirSim [29] and Unreal Engine
[30]. We utilized the physics engine and various built-in functionalities in order to imple-
ment a full dynamic model of a drone inside our simulator.

4.1. Simulation Environment and Settings
To further explain the details of the implementation of our proposed method inside

our simulator, the PID control loop operated at a frequency of 10 Hz, which means the
sensor data processing and position prediction was conducted every 0.1 s. The physical
simulation functionalities provided by AirSim [29] and Unreal Engine [30] were utilized
to illustrate randomized noise in terms of drone control outputs with motors. On the other
hand, we implemented a custom noise system to sensor measurements. Finally, we de-
signed our event-based controller to perform regular evaluations at a frequency of 2 Hz
and perform event-based emergency diagnosis at each waypoint arrival event.

Figure 4. Control flowchart illustrating the control loop implemented in the event-based controller.
The event-based controller will not accept both early and late arrivals at each designated waypoint.
If the drone does not arrive inside the time-window, the event-based controller will consider the
situation an emergency.

As a result, our event-based controller would be able to detect both early arrivals and
late arrivals. By restricting the drone’s maneuvering time interval, we expect to provide a
strict standard for drone controls and further ensure fail-safe missions.

The theoretically ideal implementation of our event-based controller is to only op-
erate in a discrete manner based on events such as waypoint arrivals and exceeding

Appl. Sci. 2022, 12, 8501 6 of 16

time-windows. However, for the practicality of the algorithm, we recommend applying
waypoints at narrow intervals to increase the diagnosing cycles and improve the calculation
and control accuracy.

4. Case Study

We attempted to test and verify our proposed method in simulation environments
to see how well it detects emergency situations. We created a custom 3D simulation
environment dedicated to testing our proposed system using AirSim [29] and Unreal
Engine [30]. We utilized the physics engine and various built-in functionalities in order to
implement a full dynamic model of a drone inside our simulator.

4.1. Simulation Environment and Settings

To further explain the details of the implementation of our proposed method inside
our simulator, the PID control loop operated at a frequency of 10 Hz, which means the
sensor data processing and position prediction was conducted every 0.1 s. The physical
simulation functionalities provided by AirSim [29] and Unreal Engine [30] were utilized
to illustrate randomized noise in terms of drone control outputs with motors. On the
other hand, we implemented a custom noise system to sensor measurements. Finally, we
designed our event-based controller to perform regular evaluations at a frequency of 2 Hz
and perform event-based emergency diagnosis at each waypoint arrival event.

We attempted to simulate several common emergency situations that a drone might
encounter in the real world. We considered several possible events, such as collisions (due
to deviation and unexpected sudden collisions), system failures (motor, blade, electronics,
etc..), sensor malfunctions, and strong winds. In particular, we conducted experiments on
and studied three cases: normal case, extreme wind condition, and air collision. We tried
to compare the above cases under the terms of the time-window concept. These cases are
difficult to detect or respond to with existing control methods, so the effectiveness of our
proposed control method should be shown clearly.

Regarding the approach of our system, verifying whether a drone is in a normal state
requires estimating the expected time-window before the actual flight mission. The very
first step is to define the physical specs of the drone. In our case, we defined the drone as
a quadcopter with a wheelbase of 1.13 m, a weight of 3.8 kg, a maximum wind-resistant
speed of 6.7 m/s, and a desired flight speed of 5 m/s.

Next, we defined our mission to be a straight-line path traversal starting from way-
point A and proceeding through the mission in alphabetical order as A→ b→ c→ d→ e
→ F. After the mission was set, we conducted experiments to configure the equations and
variables required for time-window calculations. In order to calculate the time-window for
each waypoint, we attempted to average out the amount of time the drone spends while
moving various distances. After conducting over 1000 trials, we were able to get the data
of expected acceleration speed and ascent speed. We not only tested cruise, acceleration,
and de-acceleration conditions but also took various wind conditions in the count. After
getting the data, we were able to plot equations for the drone to use during the mission.

4.2. Normal Case

The first case is a normal condition where no emergency event occurs to the drone.
This case is a control group for future comparison with other cases. Figure 5a demonstrates
the drone’s movement data during a mission in the simulation environment. It is in a form
of a graph, plotted with sequential 2D locations (x, y) of the drone. As shown below, the
drone followed the path well and did not detect any type of emergency. In Figure 5b, we
can observe that the drone made it within the boundaries of normal arrival time on every
waypoint arrival. Further in Table 1, the actual numerical time data including Tstart, Tmin,
Tmax, and the actual arrival time Tarrival is displayed.

Appl. Sci. 2022, 12, 8501 7 of 16

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 17

(a)

(b)

Figure 5. (a). Drone movement 2D log on normal case. The results show the drone managed the
mission well with no failures. Both the drones with and without an event-based controller showed
similar routes. (b). Time-window check results. The black dots illustrate the actual arrival time for
each waypoint interval relative to each time-window. In this case, the drone made it in all normal
arrival time-windows. Tarrival showed a decreasing pattern over time as the drone approached the
desired speed.

Figure 5. (a). Drone movement 2D log on normal case. The results show the drone managed the
mission well with no failures. Both the drones with and without an event-based controller showed
similar routes. (b). Time-window check results. The black dots illustrate the actual arrival time for
each waypoint interval relative to each time-window. In this case, the drone made it in all normal
arrival time-windows. Tarrival showed a decreasing pattern over time as the drone approached the
desired speed.

By analyzing the normal case, we were able to partially validate the concept we are
introducing and get an idea of the trend of the result data we can expect from the simulator.
Especially from the time-window check results, the Tarrival value showed a decreasing
pattern, which was due to the drone approaching closer to the desired speed over time. In
addition, we gained confidence on the length of the time-window scope we implemented,
which was one second. This allowed a foundation to be established for further experiments
with different cases.

Appl. Sci. 2022, 12, 8501 8 of 16

Table 1. The actual numerical time data for each waypoint, including Tstart, Tmin, Tmax, and the actual
arrival time Tarrival for the normal case. All five Tarrival resulted in arriving inside the time-window
without any issue. Each start time was calculated after the Tarrival data were retrieved and did not
consider computational delays.

Path Tstart Tmin Tmax Tarrival

A to b 0.00 s 4.50 s 5.50 s 5.23 s
b to c 5.23 s 9.73 s 10.73 s 10.26 s
c to d 10.26 s 14.76 s 15.76 s 15.14 s
d to e 15.14 s 19.64 s 20.64 s 19.92 s
e to F 19.92 s 24.42 s 25.42 s 24.59 s

4.3. Abnormal Case: Too Early (Extreme Wind)

The next case is an extreme wind condition. We set the wind speed in this case to
7.0 m/s, which is more than the drone can normally handle. This speed limit is about
5.0 m/s, and is an assumption based on the drone specs and a considerable recommendation
for real-world applications. Figure 6a demonstrates how the drone maneuvers during
extreme wind conditions. Since the wind was heading parallel to the drone’s direction, we
can observe that the drone was moving faster than expected. After a few waypoints, our
event-based controller was able to detect the emergency. As shown in Figure 6b, when
the drone missed the time window during the path from c to d, the drone detected a
time-window out of bounds and called for an emergency landing. The red mark points to
the moment of detection. Further in Table 2, the actual numerical time data including Tstart,
Tmin, Tmax, and the actual arrival time Tarrival is displayed.

The strong tailwind that exceeded the drone’s capability of control forced the drone
to maneuver faster than expected. Even from the first waypoint, the drone nearly made
it within the normal arrival time-window. It might be controversial to consider tailwind
an abnormal situation, but if the drone is not to move in a straight line, there is a chance
of it possibly crashing into obstacles in urban surroundings. This case study proved
the capability of our event-based controllers’ ability to handle hard-to-detect abnormal
situations.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 17

Table 1. The actual numerical time data for each waypoint, including Tstart, Tmin, Tmax, and the actual
arrival time Tarrival for the normal case. All five Tarrival resulted in arriving inside the time-window
without any issue. Each start time was calculated after the Tarrival data were retrieved and did not
consider computational delays.

Path Tstart Tmin Tmax Tarrival
A to b 0.00s 4.50s 5.50s 5.23s
b to c 5.23s 9.73s 10.73s 10.26s
c to d 10.26s 14.76s 15.76s 15.14s
d to e
e to F

15.14s
19.92s

19.64s
24.42s

20.64s
25.42s

19.92s
24.59s

By analyzing the normal case, we were able to partially validate the concept we are
introducing and get an idea of the trend of the result data we can expect from the simula-
tor. Especially from the time-window check results, the Tarrival value showed a decreasing
pattern, which was due to the drone approaching closer to the desired speed over time.
In addition, we gained confidence on the length of the time-window scope we imple-
mented, which was one second. This allowed a foundation to be established for further
experiments with different cases.

4.3. Abnormal Case: Too Early (Extreme Wind)
The next case is an extreme wind condition. We set the wind speed in this case to 7.0

m/s, which is more than the drone can normally handle. This speed limit is about 5.0 m/s,
and is an assumption based on the drone specs and a considerable recommendation for
real-world applications. Figure 6a demonstrates how the drone maneuvers during ex-
treme wind conditions. Since the wind was heading parallel to the drone’s direction, we
can observe that the drone was moving faster than expected. After a few waypoints, our
event-based controller was able to detect the emergency. As shown in Figure 6b, when the
drone missed the time window during the path from c to d, the drone detected a time-
window out of bounds and called for an emergency landing. The red mark points to the
moment of detection. Further in Table 2, the actual numerical time data including Tstart,
Tmin, Tmax, and the actual arrival time Tarrival is displayed.

(a)

Figure 6. Cont.

Appl. Sci. 2022, 12, 8501 9 of 16
Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 17

(b)

Figure 6. (a). Drone movement 2D log on abnormal case: too early. The vertical red line marks the
moment when the drone detected an emergency and proceeded with an emergency landing. The
wind was applied from the beginning of the mission, which is marked with a yellow line. Due to
extreme wind conditions, the drone could not provide stable operations. (b). Time-window check
results. The drone did not make it in the normal arrival time-windows on the path from c to d. The
yellow line at the beginning indicates that extreme wind conditions were applied from the begin-
ning of the flight. The red line indicates the moment where the event-based controller detected an
abnormal situation due to early arrival.

Table 2. The actual numerical time data including Tstart, Tmin, Tmax, and the actual arrival time Tarrival
for the extreme wind case. On the path from c to d, the Tarrival was outside the time-window. The
initial call for an emergency landing would have been 13.61 seconds away from the start of the
mission. This is a considerably long period of time, but better than lacking the ability to detect such
conditions with using PID controllers alone.

Path Tstart Tmin Tmax Tarrival
A to b 0.00s 4.50s 5.50s 4.74s
b to c 4.74s 9.24s 10.24s 9.27s
c to d
d to e
e to F

9.27s

13.77s

14.77s

13.61s

The strong tailwind that exceeded the drone’s capability of control forced the drone
to maneuver faster than expected. Even from the first waypoint, the drone nearly made it
within the normal arrival time-window. It might be controversial to consider tailwind an
abnormal situation, but if the drone is not to move in a straight line, there is a chance of it
possibly crashing into obstacles in urban surroundings. This case study proved the capa-
bility of our event-based controllers’ ability to handle hard-to-detect abnormal situations.

4.4. Abnormal Case: Too Late (Air Collision)
The next case is the collision encounter simulation. We made the drone get hit by an

unknown flying object at waypoint C and examined the control method’s response to the
incident, as shown in Figure 7a. The drone was not able to arrive at waypoint c, meaning
it would either call for an emergency landing or deploy a parachute right after the interval
time exceeded the max out-of-bounds time-window. In Figure 7b, the moment of the ac-
tual emergency occurrence is marked with a yellow line, whereas the moment of emer-
gency detection is marked with a red line. The moment of emergency detection describes
the split moment where the event-based controller diagnose an emergency. Further in

Figure 6. (a). Drone movement 2D log on abnormal case: too early. The vertical red line marks the
moment when the drone detected an emergency and proceeded with an emergency landing. The
wind was applied from the beginning of the mission, which is marked with a yellow line. Due to
extreme wind conditions, the drone could not provide stable operations. (b). Time-window check
results. The drone did not make it in the normal arrival time-windows on the path from c to d.
The yellow line at the beginning indicates that extreme wind conditions were applied from the
beginning of the flight. The red line indicates the moment where the event-based controller detected
an abnormal situation due to early arrival.

Table 2. The actual numerical time data including Tstart, Tmin, Tmax, and the actual arrival time
Tarrival for the extreme wind case. On the path from c to d, the Tarrival was outside the time-window.
The initial call for an emergency landing would have been 13.61 s away from the start of the mission.
This is a considerably long period of time, but better than lacking the ability to detect such conditions
with using PID controllers alone.

Path Tstart Tmin Tmax Tarrival

A to b 0.00 s 4.50 s 5.50 s 4.74 s
b to c 4.74 s 9.24 s 10.24 s 9.27 s
c to d 9.27 s 13.77 s 14.77 s 13.61 s
d to e
e to F

4.4. Abnormal Case: Too Late (Air Collision)

The next case is the collision encounter simulation. We made the drone get hit by an
unknown flying object at waypoint C and examined the control method’s response to the
incident, as shown in Figure 7a. The drone was not able to arrive at waypoint c, meaning it
would either call for an emergency landing or deploy a parachute right after the interval
time exceeded the max out-of-bounds time-window. In Figure 7b, the moment of the actual
emergency occurrence is marked with a yellow line, whereas the moment of emergency
detection is marked with a red line. The moment of emergency detection describes the split
moment where the event-based controller diagnose an emergency. Further in Table 3, the
actual numerical time data including Tstart, Tmin, Tmax, and the actual arrival time Tarrival is
displayed.

Appl. Sci. 2022, 12, 8501 10 of 16

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 17

Table 3, the actual numerical time data including Tstart, Tmin, Tmax, and the actual arrival
time Tarrival is displayed.

(a)

(b)

Figure 7. (a). Drone movement 2D log on abnormal case: too late. The vertical red line marks the
moment when the drone detected an emergency and proceeded with an emergency landing. Due
to a collision, the drone far exceeded the expected path, which could possibly have led to secondary
collisions. (b). Time-window check results. The drone did not make it in the normal arrival time-
windows on the path from b to c. The yellow line after the drone left b indicates the moment of the
collision. The red line indicates the moment where the event-based controller detected an abnormal
situation due to maximum time-window being exceeded.

Table 3. The actual numerical time data including Tstart, Tmin, Tmax, and the actual arrival time Tarrival
for the air collision case. The first interval from A to b was inside the time-window. However, due
to the collision after waypoint b, the drone struggled to return to its mission path and exceeded the
time-window. This type of emergency is extremely dangerous, yet hard to handle.

Path Tstart Tmin Tmax Tarrival
A to b 0.00s 4.50s 5.50s 5.22s
b to c 5.22s 9.72s 10.72s x
c to d

Figure 7. (a). Drone movement 2D log on abnormal case: too late. The vertical red line marks the
moment when the drone detected an emergency and proceeded with an emergency landing. Due to
a collision, the drone far exceeded the expected path, which could possibly have led to secondary
collisions. (b). Time-window check results. The drone did not make it in the normal arrival time-
windows on the path from b to c. The yellow line after the drone left b indicates the moment of the
collision. The red line indicates the moment where the event-based controller detected an abnormal
situation due to maximum time-window being exceeded.

Table 3. The actual numerical time data including Tstart, Tmin, Tmax, and the actual arrival time
Tarrival for the air collision case. The first interval from A to b was inside the time-window. However,
due to the collision after waypoint b, the drone struggled to return to its mission path and exceeded
the time-window. This type of emergency is extremely dangerous, yet hard to handle.

Path Tstart Tmin Tmax Tarrival

A to b 0.00 s 4.50 s 5.50 s 5.22 s
b to c 5.22 s 9.72 s 10.72 s x
c to d
d to e
e to F

Appl. Sci. 2022, 12, 8501 11 of 16

In-air collision is a very dangerous situation for the drone. The initial collision could
possibly lead to secondary collisions if it is not handled immediately. The 2D log shows
the exact situation. In this particular case, the collision resulted in a failure in the drone’s
airframe and caused an out-of-control situation, which is critical in urban areas. However,
the event-based controller detected the abnormality within approximately 5 s and pro-
ceeded with an emergency landing with the aid of a parachute. Even though collisions are
relatively easy to detect, we proved that our method is also able to ensure the diagnosing
and handling of collision situations.

4.5. Abnormal Case: Too Late (Motor Fail)

For the last case we simulated a failure in one of the drone’s four motors. Motor
failure could be caused by many reasons in real world situations, and is one of the most
catastrophic events, since the drone completely loses control. We let one of the motors
fail completely right after the drone passed waypoint d and analyzed the response of our
event-based controller, as shown in Figure 8a. The drone was not able to arrive at the next
waypoint and our controller detected the time-window being exceeded. Figure 8b and
Table 4 show more detailed analysis and data about the case.

Table 4. The actual numerical time data including Tstart, Tmin, Tmax, and the actual arrival time Tarrival

for the air-collision case. For the first three intervals from A to d it arrived inside the time-window.
However, due to the motor failure after waypoint d, the drone struggled to return to its mission path
and exceeded the maximum time-window. This type of emergency is extremely dangerous, yet hard
to handle.

Path Tstart Tmin Tmax Tarrival

A to b 0.00 s 4.50 s 5.50 s 5.28 s
b to c 5.28 s 9.78 s 10.78 s 10.32 s
c to d 10.32 s 14.82 s 15.82 s 15.51 s
d to e 15.51 s 20.01 s 20.01 s x
eto F

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 17

d to e
e to F

In-air collision is a very dangerous situation for the drone. The initial collision could
possibly lead to secondary collisions if it is not handled immediately. The 2D log shows
the exact situation. In this particular case, the collision resulted in a failure in the drone’s
airframe and caused an out-of-control situation, which is critical in urban areas. However,
the event-based controller detected the abnormality within approximately 5 s and pro-
ceeded with an emergency landing with the aid of a parachute. Even though collisions are
relatively easy to detect, we proved that our method is also able to ensure the diagnosing
and handling of collision situations.

4.5. Abnormal Case: Too Late (Motor Fail)
For the last case we simulated a failure in one of the drone’s four motors. Motor fail-

ure could be caused by many reasons in real world situations, and is one of the most cat-
astrophic events, since the drone completely loses control. We let one of the motors fail
completely right after the drone passed waypoint d and analyzed the response of our
event-based controller, as shown in Figure 8a. The drone was not able to arrive at the next
waypoint and our controller detected the time-window being exceeded. Figure 8b and
Table 4 show more detailed analysis and data about the case.

(a)

Figure 8. Cont.

Appl. Sci. 2022, 12, 8501 12 of 16
Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 17

(b)

Figure 8. (a). Drone movement 2D log on abnormal case: too late. The vertical red line marks the
moment when the drone detected an emergency and proceeded with an emergency landing. Due
to a motor failure, the drone far exceeded the expected path, which could possibly have led to sec-
ondary collisions. (b). Time-window check results. The drone did not make it in the normal arrival
time-windows on the path from d to e. The yellow line after the drone left d indicates the moment
of the motor failure. The red line indicates the moment where the event-based controller detected
an abnormal situation due to max time-window being exceeded.

Table 4. The actual numerical time data including Tstart, Tmin, Tmax, and the actual arrival time Tarrival
for the air-collision case. For the first three intervals from A to d it arrived inside the time-window.
However, due to the motor failure after waypoint d, the drone struggled to return to its mission
path and exceeded the maximum time-window. This type of emergency is extremely dangerous,
yet hard to handle.

Path Tstart Tmin Tmax Tarrival
A to b 0.00s 4.50s 5.50s 5.28s
b to c 5.28s 9.78s 10.78s 10.32s
c to d 10.32s 14.82s 15.82s 15.51s
d to e
e to F

15.51s

20.01s

20.01s

x

Just like air collisions, motor failures are dangerous. Sometimes collisions can cause
motor failures as a secondary effect. The 2D log from Figure 8a resulted in a somewhat
similar situation as the one in Figure 7a. The drone totally lost its control and drifted far
away from the safe boundaries. Luckily, as in the previous case, the event-based controller
was able to detect the abnormality 5.5 s after the moment of incident. Detecting and han-
dling this type of emergency situation is outside the PID controller’s ability. We proved
that our method is able to cover the shaded areas of PID controllers.

4.6. Discussions
It is important to be aware of emergencies that have already occurred due to the fail-

ure to respond in advance as quickly as possible. PID control methods seem to show suf-
ficient performance for control within the normal range, but it is difficult to recognize

Figure 8. (a). Drone movement 2D log on abnormal case: too late. The vertical red line marks
the moment when the drone detected an emergency and proceeded with an emergency landing.
Due to a motor failure, the drone far exceeded the expected path, which could possibly have led
to secondary collisions. (b). Time-window check results. The drone did not make it in the normal
arrival time-windows on the path from d to e. The yellow line after the drone left d indicates the
moment of the motor failure. The red line indicates the moment where the event-based controller
detected an abnormal situation due to max time-window being exceeded.

Just like air collisions, motor failures are dangerous. Sometimes collisions can cause
motor failures as a secondary effect. The 2D log from Figure 8a resulted in a somewhat
similar situation as the one in Figure 7a. The drone totally lost its control and drifted far
away from the safe boundaries. Luckily, as in the previous case, the event-based controller
was able to detect the abnormality 5.5 s after the moment of incident. Detecting and
handling this type of emergency situation is outside the PID controller’s ability. We proved
that our method is able to cover the shaded areas of PID controllers.

4.6. Discussions

It is important to be aware of emergencies that have already occurred due to the failure
to respond in advance as quickly as possible. PID control methods seem to show sufficient
performance for control within the normal range, but it is difficult to recognize situations
outside the normal range of the drone, and even if it is recognized, the cases in which it can
be dealt with are quite limited.

Therefore, we conducted experiments to prove that risk factors can be reduced by
recognizing emergency situations outside of the normal range and making an emergency
landing by mounting an event-based controller on the upper layer that operates simulta-
neously with the PID controller. In fact, we were able to witness expected results in case
studies through simulations, as shown in Figure 9.

Appl. Sci. 2022, 12, 8501 13 of 16

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 17

situations outside the normal range of the drone, and even if it is recognized, the cases in
which it can be dealt with are quite limited.

Therefore, we conducted experiments to prove that risk factors can be reduced by
recognizing emergency situations outside of the normal range and making an emergency
landing by mounting an event-based controller on the upper layer that operates simulta-
neously with the PID controller. In fact, we were able to witness expected results in case
studies through simulations, as shown in Figure 9.

Figure 9. Comparison of average abnormal running time. Each case was conducted 100 times to
reasonably compare the results. It turned out that too-early cases took more time to detect than too-
late cases, where both too-late cases were detected within about 5.5 s on average.

As shown in Figure 9 below, the difference can be seen numerically by comparing
the abnormal running time according to the presence or absence of an event-based con-
troller. Abnormal operation time is a concept that expresses flight time in a space outside
the normal range or a time outside the normal range. In Figure 9 below, when comparing
the case of air collision, it showed a better performance of about 300%. It took 5.5 s when
there was an event-based controller and 16.8 s when there was no event-based controller.
We believe that reducing abnormal operation time as much as possible is essential for safe
drone-service operation.

The main purpose of our approach is to immediately recognize and detect abnormal
situations caused by malfunctions or external environmental factors. The experiments
above proved that it is capable of handling emergency situations without diagnosing the
specific cause and situations with time-window mechanisms.

However, this approach is not a sophisticated control method through intelligent
control. It is also not a technique capable of failure diagnosis for analyzing the cause of an
abnormal situation. In order to apply this technique, spatiotemporal statistical analysis of
the predicted path must be conducted first.

In the future, through convergence research with existing control and diagnostic
techniques, it will be possible to use this method not only for risk detection, but also for
precise control and diagnosis.

5. Conclusions
Drone applications are widely studied in various fields. We captured the potential

for urban supply-delivery applications. Unfortunately, many raise concerns about the re-
liability and safety of urban drone operations. Numerous studies on low-level drone-con-
trol algorithms have extended the capability and stability. Furthermore, recent studies
have introduced fault-tolerant control methods and robust fault-detecting methods.

Figure 9. Comparison of average abnormal running time. Each case was conducted 100 times to
reasonably compare the results. It turned out that too-early cases took more time to detect than
too-late cases, where both too-late cases were detected within about 5.5 s on average.

As shown in Figure 9 below, the difference can be seen numerically by comparing the
abnormal running time according to the presence or absence of an event-based controller.
Abnormal operation time is a concept that expresses flight time in a space outside the
normal range or a time outside the normal range. In Figure 9 below, when comparing the
case of air collision, it showed a better performance of about 300%. It took 5.5 s when there
was an event-based controller and 16.8 s when there was no event-based controller. We
believe that reducing abnormal operation time as much as possible is essential for safe
drone-service operation.

The main purpose of our approach is to immediately recognize and detect abnormal
situations caused by malfunctions or external environmental factors. The experiments
above proved that it is capable of handling emergency situations without diagnosing the
specific cause and situations with time-window mechanisms.

However, this approach is not a sophisticated control method through intelligent
control. It is also not a technique capable of failure diagnosis for analyzing the cause of an
abnormal situation. In order to apply this technique, spatiotemporal statistical analysis of
the predicted path must be conducted first.

In the future, through convergence research with existing control and diagnostic
techniques, it will be possible to use this method not only for risk detection, but also for
precise control and diagnosis.

5. Conclusions

Drone applications are widely studied in various fields. We captured the potential for
urban supply-delivery applications. Unfortunately, many raise concerns about the reliabil-
ity and safety of urban drone operations. Numerous studies on low-level drone-control
algorithms have extended the capability and stability. Furthermore, recent studies have
introduced fault-tolerant control methods and robust fault-detecting methods. However,
we saw the demand to further extend the safety level to handle unexpected, abnormal
situations that might occur in urban areas.

The goal of our method was to implement a high-level event-based controller in
drone emergency-detection matters. We proposed a new intelligent control methodology
focusing on implementing partial situation awareness. This was achieved by introducing
an approach based on the time-window scope. We designed our method to operate in
autonomous drone waypoint missions, cooperate with existing low-level control methods,
and ensure double safety.

Appl. Sci. 2022, 12, 8501 14 of 16

We designed a drone simulator and studied several emergency situations a drone
might encounter in the real world. To calculate the expected interval time between way-
points, we took a statistical approach and applied conditional variables to give a slightly
lenient time-window range. We were able to confirm that our approach was effective and
detected emergencies well, as shown by several case-study results. As an example, we
simulated an extreme wind situation (i.e., wind speed exceeds permissible limit), and the
drone diagnosed an emergency when typical PID controllers could not. Without the aid of
our method, the drone might have resulted in a crash.

In overall terms, our event-based approach was able to detect emergency (abnor-
mal) events such as extreme winds and air collisions. It is true that in some cases, our
approach resulted in slow reaction times. However, by applying advanced calibrations for
calculating more accurate expected interval time in order to fine-tune the time-window
with the placement of more narrow waypoint intervals, there seems to be more room for
improvement.

We found that by applying our control method using the time-window concept in
conjunction with low-level control methods, we could better detect abnormal situations
than low-level-only approaches. This is because our proposal implements an understanding
of situation awareness, which is lacking in other sensor-based control methods.

However, there remains a question about the robustness of our approach, since our
method was only tested in simulation environments. We are currently working on real-
world field tests to validate the robustness of our method. We also hope to compare
emergency-detection and -handling performances with conventional drones sold on the
market.

In order to enhance the proposing method, we look forward to further extending
our research in two major contexts. First, we plan to explore additional methods (e.g.,
deep learning [31]) to enhance the reaction time and robustness of event-based emergency
detections, which is claimed to be a major weakness of our current proposal. Secondly, we
wish to implement secondary position-estimating methods that operate without GPS data,
since GPS errors are the biggest barriers to robust drone control in urban environments.

Moreover, we want to remark that it is necessary for us to continue to consider other
ideas that can enhance and upgrade our method. As an example, we believe that an
adaptive control approach can aid in this context (e.g., [32]), which is a control strategy for
stability and safety introduced initially for high-performance shipping systems.

Since safety concerns of drone operations are rising, we believe that the proposed
event-based emergency-detecting method can provide effective countermeasures. This was
achieved by a rather simple but realistic approach with the time-window concept. The
time-window used by our algorithm express a spatiotemporal safety zone for the drone,
meaning that if the drone is in bound of the time-window, it guarantees a normal condition.

Our event-based drone emergency-detection method is simple and effective to apply
in the real world, and we hope our method can further extend the reliability of real-world
autonomous drone services. Furthermore, we believe our method can not only detect
drone emergencies, but also contribute to aviation risk analysis measures by utilizing the
space–time safety zone, represented as a time-window.

Author Contributions: Conceptualization, I.K., S.-y.O. and S.-d.C.; Data curation, I.-y.K.; Formal
analysis, H.-g.K. and I.-y.K.; Methodology, I.K. and S.-d.C.; Project administration, I.K. and S.-d.C.;
Software, I.K. and I.-y.K.; Supervision, H.-g.K., S.-y.O. and S.-d.C.; Validation, I.K. and H.-g.K.;
Visualization, I.K. and I.-y.K.; Writing–original draft, I.K.; Writing–review & editing, I.K., H.-g.K.,
S.-y.O. and S.-d.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Korea Research Institute for defense Technology planning
and advancement with government funds (research and development expenses for the weapons
system modification and development support project) [F210009] in 2021.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Appl. Sci. 2022, 12, 8501 15 of 16

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Merkert, R.; Bushell, J. Managing the Drone Revolution: A Systematic Literature Review into the Current Use of Airborne Drones

and Future Strategic Directions for Their Effective Control. J. Air Transp. Manag. 2020, 89, 101929. [CrossRef] [PubMed]
2. Scott, J.; Scott, C. Drone Delivery Models for Healthcare. In Proceedings of the 50th Hawaii International Conference on System

Sciences, Hilton Waikoloa Village, HI, USA, 4–7 January 2017.
3. Ghasri, M.; Maghrebi, M. Factors Affecting Unmanned Aerial Vehicles’ Safety: A Post-Occurrence Exploratory Data Analysis of

Drones’ Accidents and Incidents in Australia. Saf. Sci. 2021, 139, 105273. [CrossRef]
4. Plioutsias, A.; Karanikas, N.; Chatzimihailidou, M.M. Hazard Analysis and Safety Requirements for Small Drone Operations: To

What Extent Do Popular Drones Embed Safety? Risk Anal. 2018, 38, 562–584. [CrossRef] [PubMed]
5. Yu, Y.; Barthaud, D.; Price, B.A.; Bandara, A.K.; Zisman, A.; Nuseibeh, B. LiveBox: A Self-Adaptive Forensic-Ready Service for

Drones. IEEE Access 2019, 7, 148401–148412. [CrossRef]
6. Ang, K.H.; Chong, G.; Li, Y. PID Control System Analysis, Design, and Technology. IEEE Trans. Control Syst. Technol. 2005, 13,

559–576. [CrossRef]
7. Babaei, A.R.; Mortazavi, M.; Moradi, M.H. Classical and Fuzzy-Genetic Autopilot Design for Unmanned Aerial Vehicles. Appl.

Soft Comput. 2011, 11, 365–372. [CrossRef]
8. Kim, J.; Gadsden, S.A.; Wilkerson, S.A. A Comprehensive Survey of Control Strategies for Autonomous Quadrotors. Can. J. Electr.

Comput. Eng. 2020, 43, 3–16. [CrossRef]
9. Smyczynski, P.; Starzec, L.; Granosik, G. Autonomous Drone Control System for Object Tracking: Flexible System Design with

Implementation Example. In Proceedings of the 2017 22nd International Conference on Methods and Models in Automation and
Robotics (MMAR), Międzyzdroje, Poland, 28–31 August 2017; IEEE: Manhattan, NY, USA, 2017.

10. Åström, K.J.; Hägglund, T. The Future of PID Control. Control Eng. Pract. 2001, 9, 1163–1175. [CrossRef]
11. Abdelkrim, N.; Aouf, N.; Tsourdos, A.; White, B. Robust Nonlinear Filtering for INS/GPS UAV Localization. In Proceedings of

the 2008 16th Mediterranean Conference on Control and Automation, Ajaccio, France, 25–27 June 2008; IEEE: Manhattan, NY,
USA; pp. 695–702.

12. Bristeau, P.-J.; Callou, F.; Vissière, D.; Petit, N. The Navigation and Control Technology inside the AR.Drone micro UAV. IFAC
Proc. Vol. 2011, 44, 1477–1484. [CrossRef]

13. Burgard, W.; Derr, A.; Fox, D.; Cremers, A.B. Integrating Global Position Estimation and Position Tracking for Mobile Robots: The
Dynamic Markov Localization Approach. In Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots
and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190), Victoria, BC, Canada, 17 October 1998;
IEEE: Manhattan, NY, USA, 2002; Volume 2, pp. 730–735.

14. Albaker, B.M.; Rahim, N.A. A Survey of Collision Avoidance Approaches for Unmanned Aerial Vehicles. In Proceedings of the
2009 International Conference for Technical Postgraduates (TECHPOS), Kuala Lumpur, Malaysia, 14–15 December 2009; IEEE:
Manhattan, NY, USA, 2009; pp. 1–7.

15. Berbra, C.; Lesecq, S.; Martinez, J.J. A Multi-Observer Switching Strategy for Fault-Tolerant Control of a Quadrotor Helicopter. In
Proceedings of the 2008 16th Mediterranean Conference on Control and Automation, Ajaccio, France, 25–27 June 2008; IEEE:
Manhattan, NY, USA, 2008.

16. Ducard, G.J.J. Fault-Tolerant Flight Control and Guidance Systems: Practical Methods for Small Unmanned Aerial Vehicles; Springer:
London, UK, 2010; ISBN 9781849968508.

17. Heredia, G.; Ollero, A. Detection of Sensor Faults in Small Helicopter UAVs Using Observer/Kalman Filter Identification. Math.
Probl. Eng. 2011, 2011, 1–20. [CrossRef]

18. Liu, C.; Jiang, B.; Patton, R.J.; Zhang, K. Hierarchical-Structure-Based Fault Estimation and Fault-Tolerant Control for Multiagent
Systems. IEEE Trans. Control Netw. Syst. 2019, 6, 586–597. [CrossRef]

19. Qin, L.; He, X.; Yan, R.; Zhou, D. Active Fault-Tolerant Control for a Quadrotor with Sensor Faults. J. Intell. Robot. Syst. 2017, 88,
449–467. [CrossRef]

20. Rafaralahy, H.; Richard, E.; Boutayeb, M.; Zasadzinski, M. Simultaneous Observer Based Sensor Diagnosis and Speed Estimation
of Unmanned Aerial Vehicle. In Proceedings of the 2008 47th IEEE Conference on Decision and Control, Cancun, Mexico, 9–11
December 2008; IEEE: Manhattan, NY, USA, 2008; pp. 2938–2943.

21. Sadeghzadeh, I.; Zhang, Y. A Review on Fault-Tolerant Control for Unmanned Aerial Vehicles (UAVs). In Proceedings of the
Infotech@Aerospace 2011, St. Louis, MI, USA, 29–31 March 2011; American Institute of Aeronautics and Astronautics: Reston,
VA, USA, 2011.

22. Chi, S.-D.; Zeigler, B.P. Hierarchical Model-Based Diagnosis for High Autonomy Systems. J. Intell. Robot. Syst. 1994, 9, 193–207.
[CrossRef]

23. Antsaklis, P.J.; Passino, K.M.; Wang, S.J. An Introduction to Autonomous Control Systems. IEEE Control Syst. 1991, 11, 5–13.
[CrossRef]

http://doi.org/10.1016/j.jairtraman.2020.101929
http://www.ncbi.nlm.nih.gov/pubmed/32952321
http://doi.org/10.1016/j.ssci.2021.105273
http://doi.org/10.1111/risa.12867
http://www.ncbi.nlm.nih.gov/pubmed/28768049
http://doi.org/10.1109/ACCESS.2019.2942033
http://doi.org/10.1109/tcst.2005.847331
http://doi.org/10.1016/j.asoc.2009.11.027
http://doi.org/10.1109/CJECE.2019.2920938
http://doi.org/10.1016/S0967-0661(01)00062-4
http://doi.org/10.3182/20110828-6-IT-1002.02327
http://doi.org/10.1155/2011/174618
http://doi.org/10.1109/TCNS.2018.2860460
http://doi.org/10.1007/s10846-017-0474-0
http://doi.org/10.1007/BF01276498
http://doi.org/10.1109/37.88585

Appl. Sci. 2022, 12, 8501 16 of 16

24. Besada, J.; Campaña, I.; Bergesio, L.; Bernardos, A.; de Miguel, G. Drone Flight Planning for Safe Urban Operations: UTM
Requirements and Tools. Pers. Ubiquitous Comput. 2020, 26, 1085–1104. [CrossRef]

25. Huang, H.; Savkin, A.V.; Huang, C. Reliable Path Planning for Drone Delivery Using a Stochastic Time-Dependent Public
Transportation Network. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4941–4950. [CrossRef]

26. Ochoa, C.A.; Atkins, E.M. Fail-Safe Navigation for Autonomous Urban Multicopter Flight. In Proceedings of the AIAA
Information Systems-AIAA Infotech@Aerospace, Kissimmee, FL, USA, 8–12 January 2018; American Institute of Aeronautics and
Astronautics: Reston, VA, USA, 2017.

27. Siewert, S.; Sampigethaya, K.; Buchholz, J.; Rizor, S. Fail-Safe, Fail-Secure Experiments for Small UAS and UAM Traffic in Urban
Airspace. In Proceedings of the 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), San Diego, CA, USA, 8–12
September 2019; IEEE: Manhattan, NY, USA, 2019; pp. 1–7.

28. Yakovlev, K.S.; Makarov, D.A.; Baskin, E.S. Automatic Path Planning for an Unmanned Drone with Constrained Flight Dynamics.
Sci. Tech. Inf. Process. 2015, 42, 347–358. [CrossRef]

29. Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles. In Field
and Service Robotics; Springer International Publishing: Cham, Switzerland, 2018; pp. 621–635, ISBN 9783319673608.

30. Epic Games. Unreal Engine. 2019. Available online: https://www.unrealengine.com (accessed on 16 May 2022).
31. Jafari, M.; Xu, H. Intelligent Control for Unmanned Aerial Systems with System Uncertainties and Disturbances Using Artificial

Neural Network. Drones 2018, 2, 30. [CrossRef]
32. Fortuna, L.; Muscato, G. A Roll Stabilization System for a Monohull Ship: Modeling, Identification, and Adaptive Control. IEEE

Trans. Control. Syst. Technol. 1996, 4, 18–28. [CrossRef]

http://doi.org/10.1007/s00779-019-01353-7
http://doi.org/10.1109/TITS.2020.2983491
http://doi.org/10.3103/S0147688215050093
https://www.unrealengine.com
http://doi.org/10.3390/drones2030030
http://doi.org/10.1109/87.481763

	Introduction
	Background
	Proposed Methodology
	System Architecture
	Event-Based Control Mechanism

	Case Study
	Simulation Environment and Settings
	Normal Case
	Abnormal Case: Too Early (Extreme Wind)
	Abnormal Case: Too Late (Air Collision)
	Abnormal Case: Too Late (Motor Fail)
	Discussions

	Conclusions
	References

